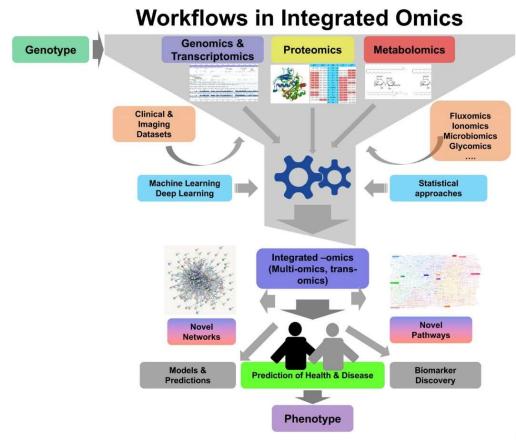
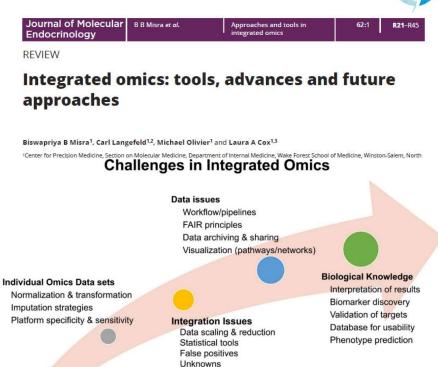

Metabolomics as a Biomarker Discovery Platform: Opportunities in Alzheimer's Disease Research

Outline of the Talk

- 1. Why Metabolomics- Definitions and Scope
- 2. Metabolomics Biomarkers: The State of the Art
- 3. Metabolomics in Alzheimer's Disease
- 4. Future Scope of Metabolomics with CPM





Current State of Art in Integrated Omics

>3 or more omics data types Forced or biological correction measures

Experimental Challenges

Sample preparation Study design Reproducibility

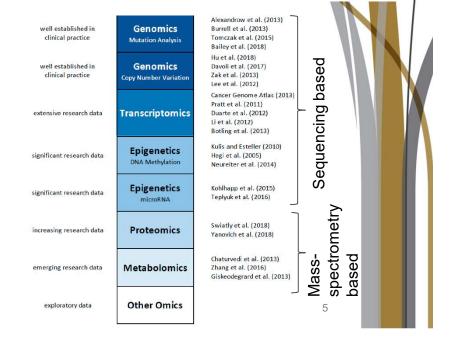
Steady state assumption Statistical power Ontology & enrichment analysis

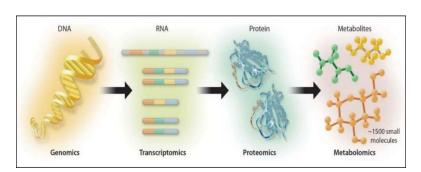
Wake Forest Baptist Medical Center

Omics: Definitions & Importance

Omics

The English-language neologism **omics** informally refers to a field of study in biology ending in *-omics*, such as genomics, proteomics or metabolomics.


Omics aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms.


The Need for Multi-Omics Biomarker Signatures in Precision Medicine

by (Michael Olivier 1.* \boxtimes , (Reto Asmis 1 \boxtimes \bigcirc), (Gregory A. Hawkins 2 \boxtimes , (Timothy D. Howard 3 \boxtimes and (Laura A. Cox 1 \boxtimes

- 1 Center for Precision Medicine, Department of Internal Medicine, Wake Forest Baptist Health Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
- ² Center for Precision Medicine, Department of Biochemistry, Wake Forest Baptist Health Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
- ³ Center for Precision Medicine, Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
- * Author to whom correspondence should be addressed.

Metabolomics: Definitions & Concepts

Patti GJ et al., Nature reviews Molecular cell biology. 2012;13(4):263-9.

Metabolite: Any organic molecule detectable in the body with a MW < 2000 Da (C, H, N, O, P, S)

Includes sugars, nucleosides, organic acids, ketones, aldehydes, peptides, oligonucleotides, amines, amino acids, lipids, steroids, alkaloids and drugs (xenobiotics) from humans, plants & microbial products

Metabolomics: The quantitative measurement of the metabolic profiles of model organisms to characterize their phenotype or phenotypic response to genetic or nutritional perturbations

NOT: Metabolite Profiling

Examples of Metabolites (aka. Biochemicals)

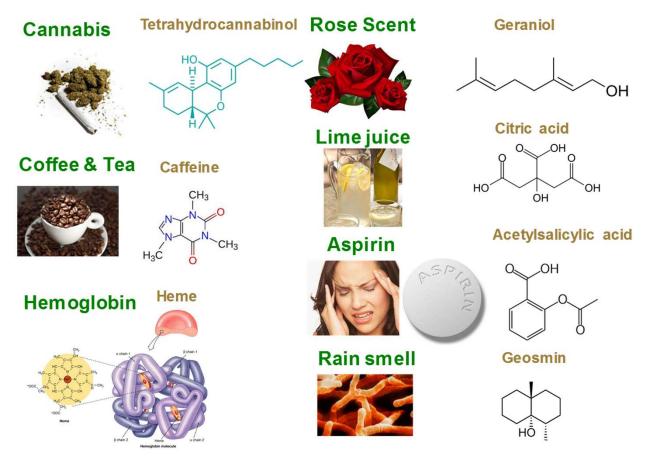
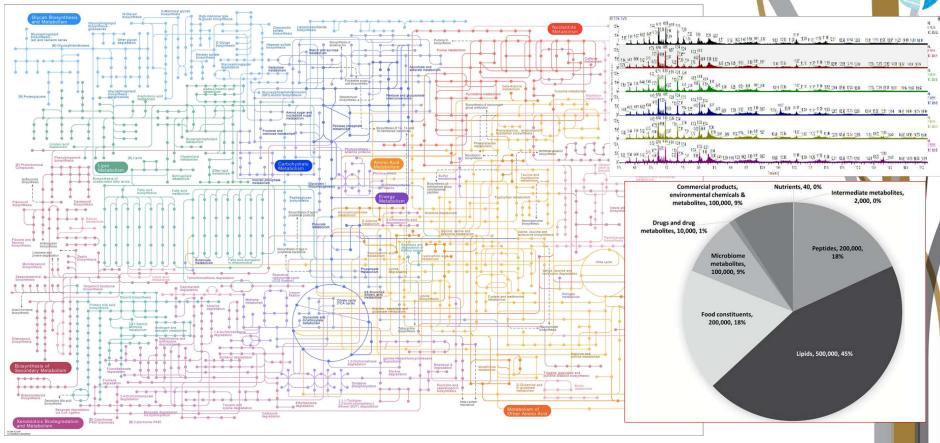
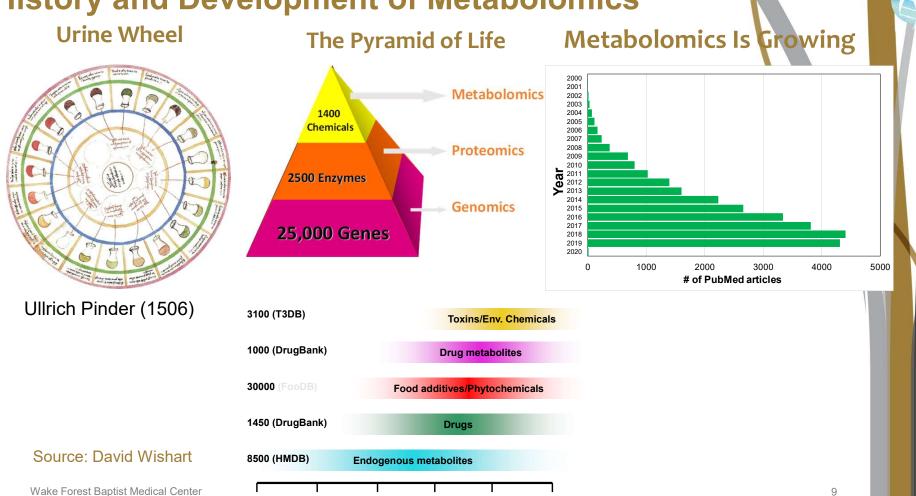



Image Sources: Various, CC0 licensed

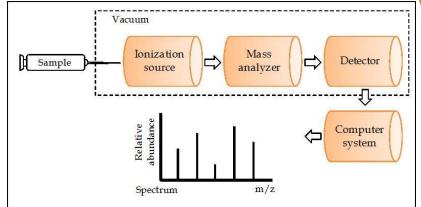
Cellular Metabolism is very Complex!

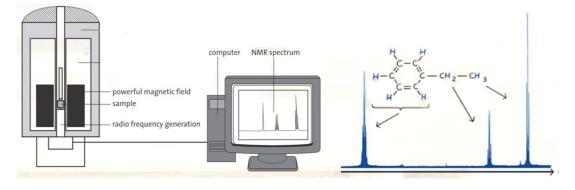

History and Development of Metabolomics

mΜ

μМ

nΜ


рΜ

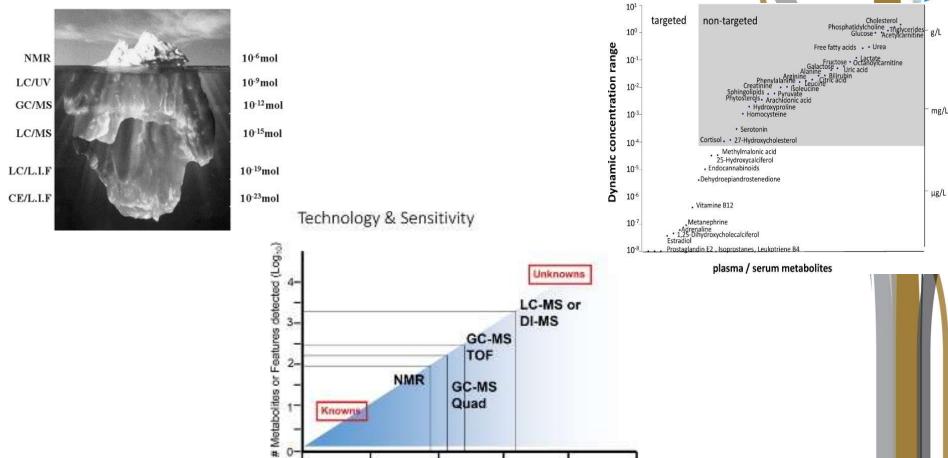

Metabolomics: Technology/ Platforms

- UPLC, HPLC
- CE/microfluidics
- LC-MS
- GC-MS
- FT-MS
- QqQ-MS
- NMR spectroscopy
- Raman, IR, FTIR
- X-ray crystallography
- LIF detection

NMR: Nuclear Magnetic Resonance (aka. MRI)

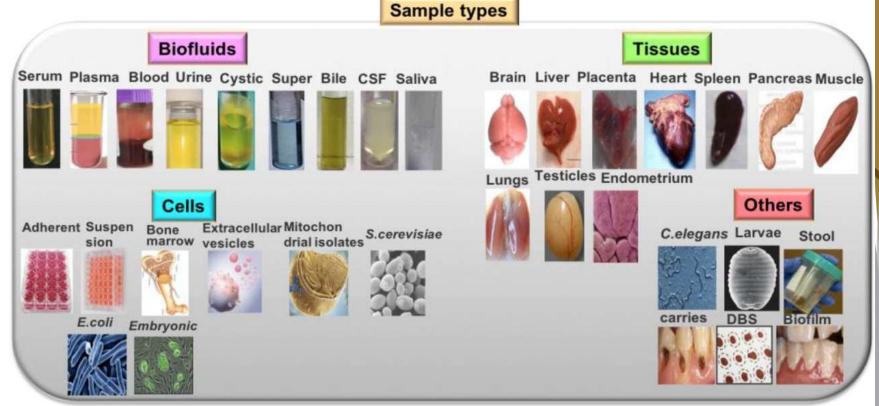
How to choose the right platform for metabolites?

mM

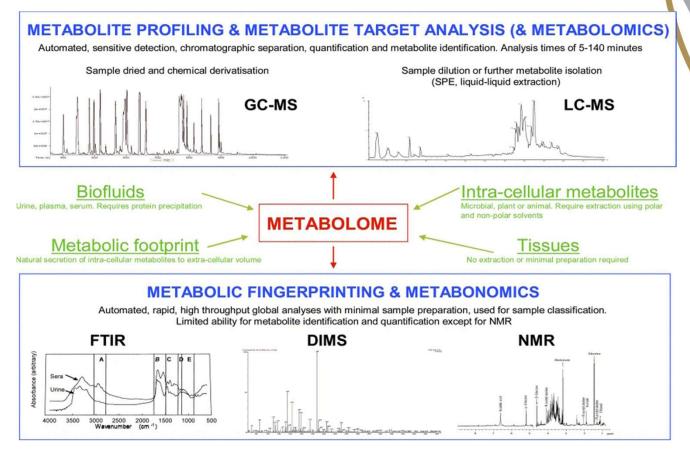

μМ

Sensitivity or LDL

pM


Wake Forest Baptist Medical Center

Where does one find metabolites?

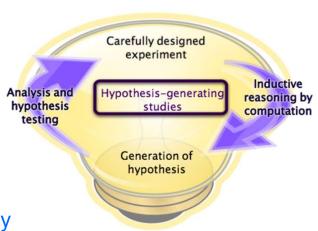


Nandania et al., 2018, bioRxiv

Wake Forest Baptist Medical Center

Metabolomics Platforms of Choice

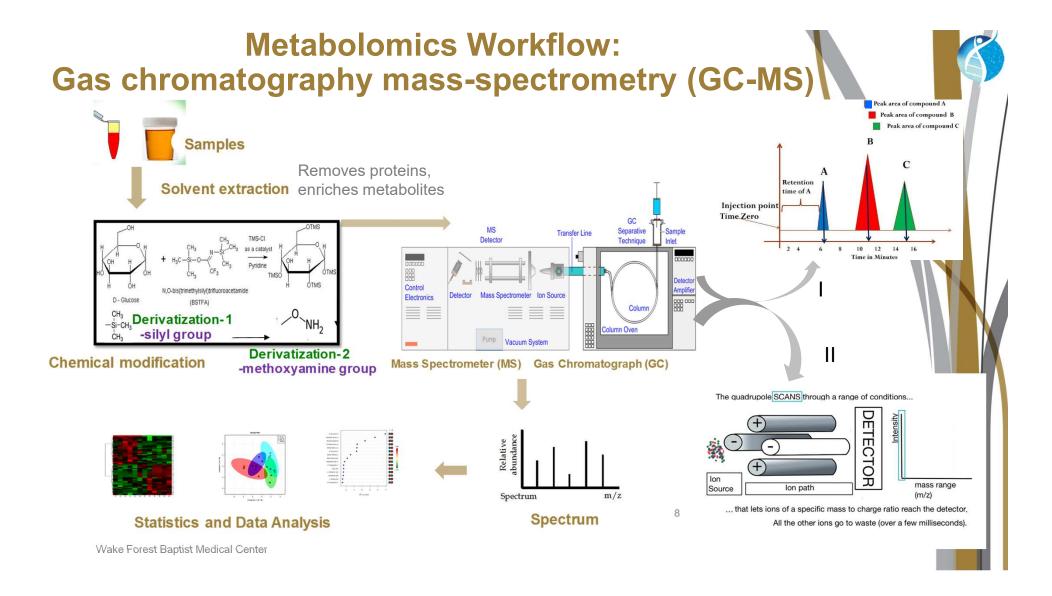
Targeted Metabolomics vs Untargeted Metabolomics



"detect the expected"

- ✓ Hypothesis driven
- ✓ Absolute quantification
- ✓ Needs reference standards
- ✓ Not comprehensive
- ✓ More precision/ accuracy
- ✓ Better sensitivity
- ✓ Easy interpretation
- ✓ Pathway mapping

i.e., do sphingolipids in CSF change in AD?


Untargeted:

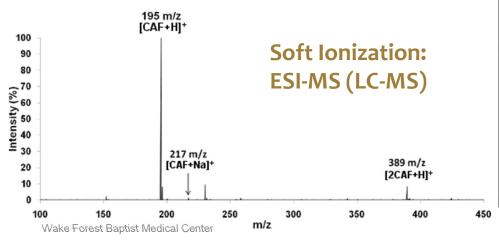
"detect the unexpected (novel, unknown...)"

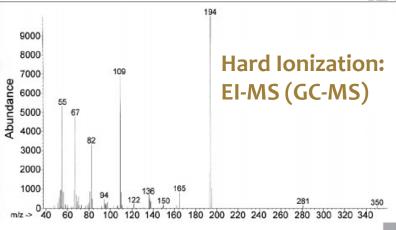
- ✓ Hypothesis generating
- ✓ Semi-quantitative
- √ No reference standards
- √ Fold changes
- ✓ Biomarker discovery
- ✓ Comprehensive, unbiased
- ✓ Lots of unknowns
- Multivariate, Network analysis

i.e., what metabolites change in urine in AD?

Wake Forest Baptist Medical Center

What is a Mass Spectrum? Example




Caffeine

Formula : C₈H₁₀N₄O₂ Nominal Mass: 194

Monoisotopic Mass: 194.0804

Average Mass: 194.1932

Steps in a Metabolomics Study

Question-driven

➤ Goals? Hypotheses? Questions?

Platform/ Instrument

> What technology to choose ? Source of

metabolites?

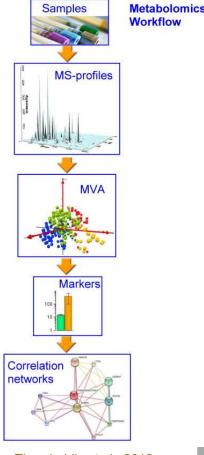
Experimental design

>Targeted vs. Untargeted approaches?

> Replication level (biological vs technical replicates)

➤ What statistics, what analysis software?

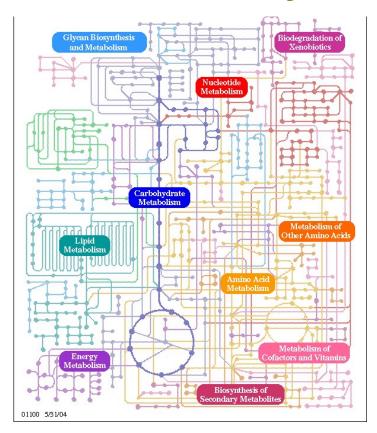
Laboratory steps (Sample Preparation) > Sample selection, preparation, quenching, storage, extraction,

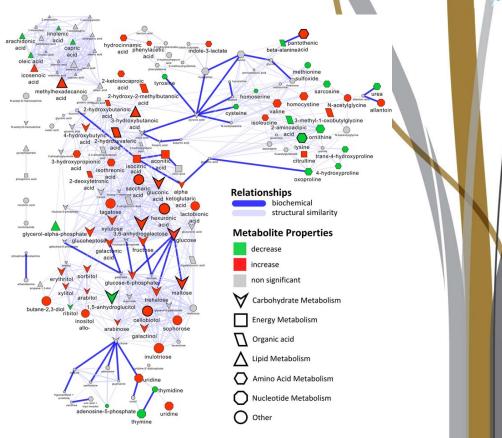

> Running of samples, QCs, MS-based Data acquisition

Bioinformatic steps/ Data Analysis

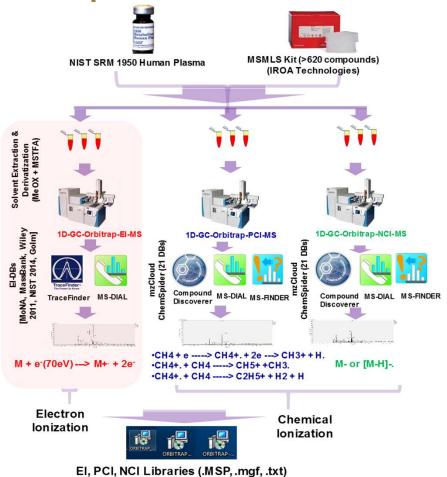
Data interpretation (Identification/ Pathway)

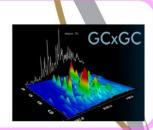
- > Data transformation and normalization
- > Analysis of differentially accumulated metabolites (multiple testing issue, multivariate statistics, IDconversion)
- Pathway mapping/ network viewing
- > Data storage (databases, MSI standards)


➤ Visualization (graphics) Answers? New Hypotheses? Follow-up experiments? > Validation?

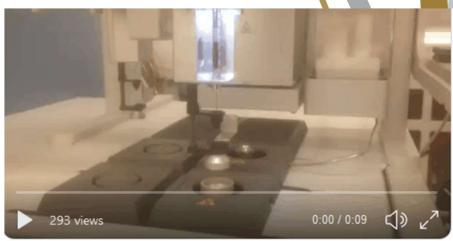

Theodoridis et al., 2012; doi:10.1016/j.aca.2011.09.0

17


Metabolic Pathways

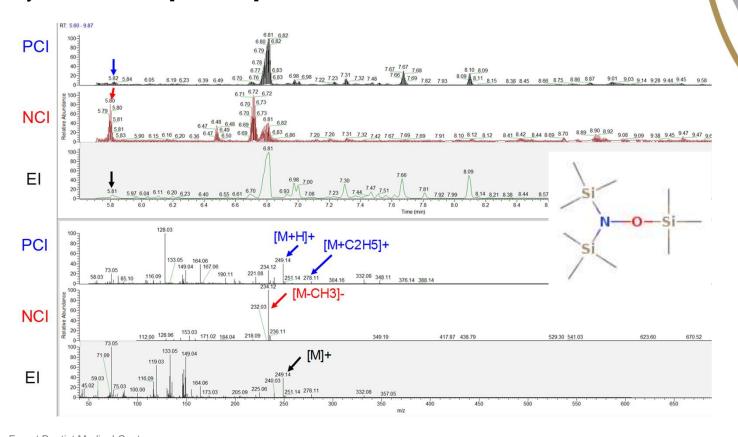

vs Metabolic Networks

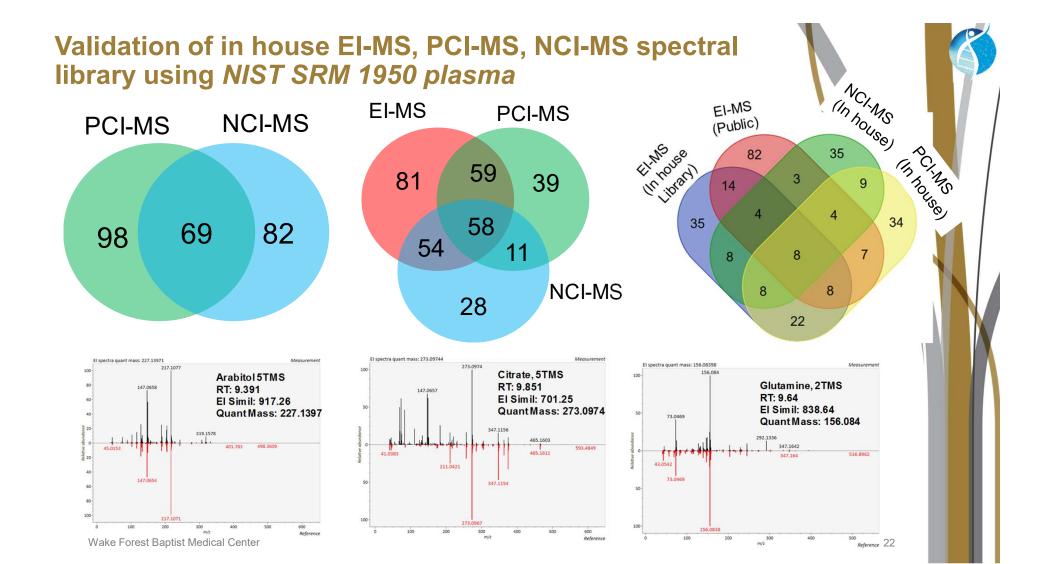
GC-MS Spectral and RT Libraries in house

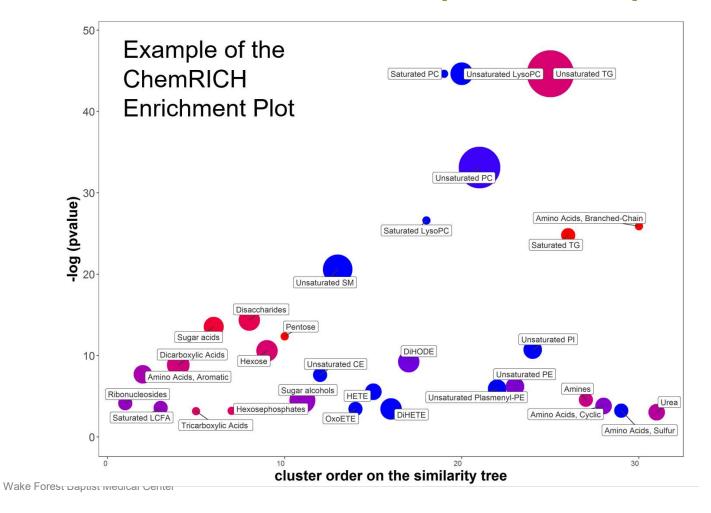


Triple TOF 6600+ System (Sciex) Metabolomics, Exposomics 6530 QTOF-ESI- MS (Agilent) with 1290 UHPLC Lipidomics

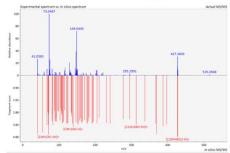
Wake Forest Baptist Medical Center


QEGC-Orbitrap-MS at work for metabolomics at CPM

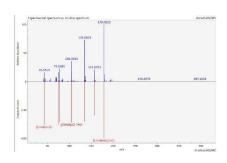



Example of GC-MS Metabolomics Spectral Acquisition

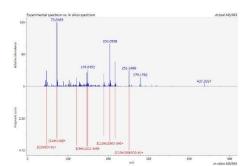
Hydroxylamine 3TMS [RT: 5.81] MW: 249.5733



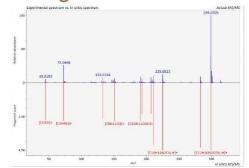
What metabolite classes do the platforms capture



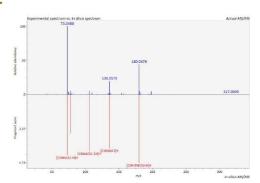
Expanding on the In House High Resolution Spectral Libraries


Exposomal Compounds:

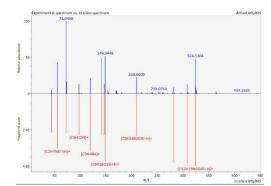
Betulin, Score: 6.91



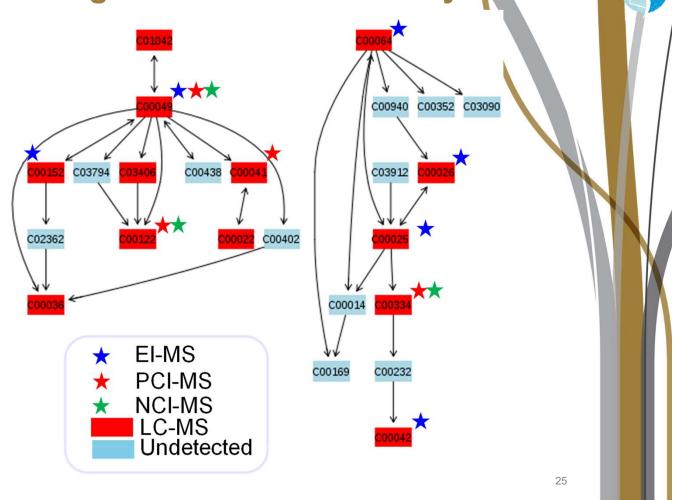
Caffeine, Score: 8.29

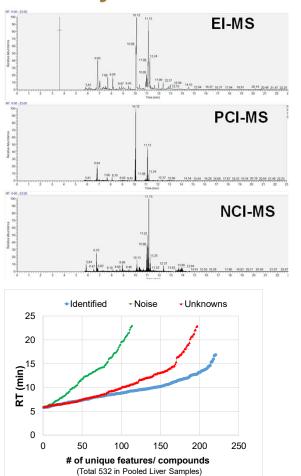


Atenolol, Score: 8.06


Endogenous Metabolites:

Thymidine, Score: 9.04

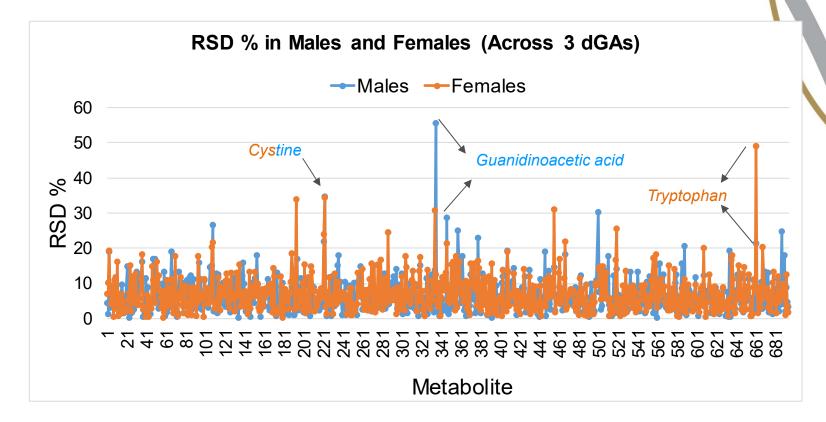

Dopaquinone, Score: 8.36


Adenosine, Score: 9.05

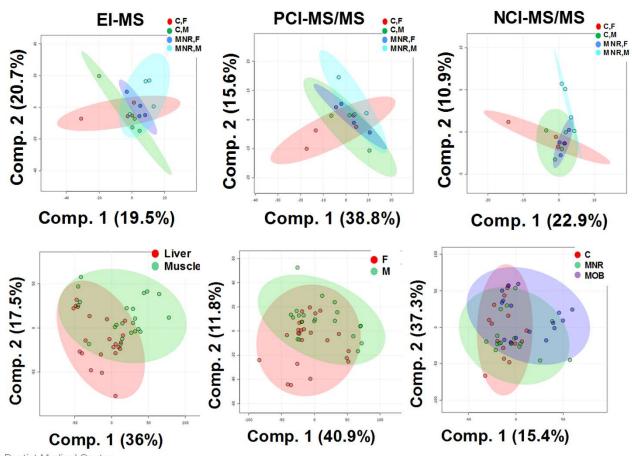
The 3 Modes and Coverage of Metabolic Pathways

Example:
Alanine,
aspartate and
glutamate
metabolism.

Data Analysis Workflow



Wake Forest Baptist Medical Center


1. Data acquisition 7. Tissue-level clusters 12. Global metabolic pathway view 2. Data QC 8. Correlated metabolites 13. Diet, Time, and Tissue-specific 3. Data Annotation **Omics Network** 9. PCA Grouping 4. Individual metabolites 14. Putative **Biomarkers** 5. Shared & Unique Metabolites 10. PLSDA Grouping 15. Correlations with 6. Significant & Large Quantitative Traits/ 11. Tissue-Specific changes **Clinical Markers**

Enrichment

Sex-specific Changes in Metabolites

Platform-independent Discrimination of Samples (i.e. metabotypes)

Metabolomics @ Center for Precision Medicine (2018-2019)

RESEARCH ARTICLE

High-resolution gas chromatography/mass spectrometry metabolomics of non-human primate serum

Metabolomics (2018) 14:75 https://doi.org/10.1007/s11306-018-1373-5

ORIGINAL ARTICLE

Optimized GC-MS metabolomics for the analysis of kidney tissue metabolites

Biswapriya B. Misra^{1,2} Ram P. Upadhayay² · Laura A. Cox^{1,2,3} · Michael Olivier^{1,2}

RESEARCH ARTICLE

Analysis of serum changes in response to a high fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis

Biswapriya B. Misra₀^{1,2}*, Sobha R. Puppala^{1,2}, Anthony G. Comuzzie³, Michael C. Mahaney⁴, John L. VandeBerg⁴, Michael Olivier^{1,2,5}, Laura A. Cox^{1,2,5}

Journal of Breath Research

PAPER

Nonhuman primate breath volatile organic compounds associate with developmental programming and cardio-metabolic status

Andrew C Bishop 10, Mark Libardoni 2, Ahsan Choudary 3, Biswapriya Misra 10, Kenneth Lange 5, John Bernal 5, Mark Nijland 7, Cun Li 3, Michael Olivier 16, Peter W Nathaniels 20, and Laura A Cox 16

New Results

Comme

Metabolic Reprogramming: Short-term Western Diet Exposure Induces Sustained Changes in Plasma Metabolites

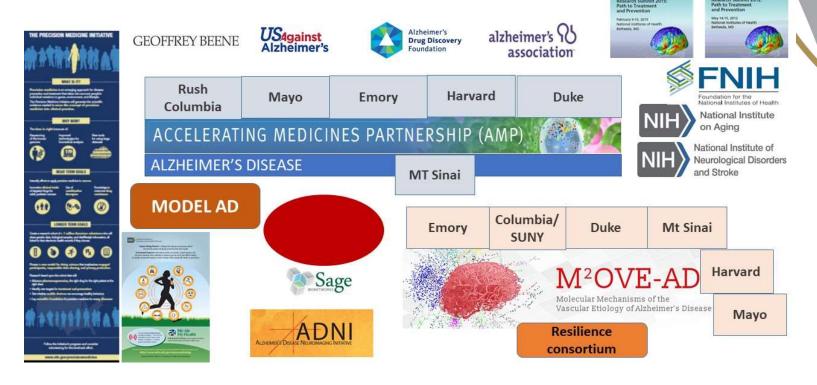
Biswapriya Biswavas Misra, Ram P Upadhayay, Vicki Mattern, John S. Parks, Laura A Cox, Anthony G Comuzzie, Michael Olivier

H

New Results

Comment or

Comparison of a GC-Orbitrap-MS with Parallel GC-FID Capabilities for Metabolomics of Human Serum


Diswapriya B. Misra, Ekong Bassey, Michael Olivier

Wake Forest Baptist Medical Center

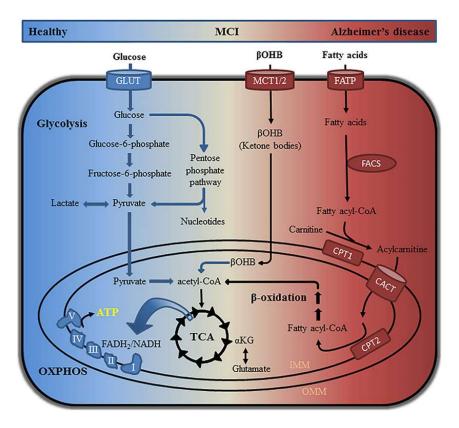
Metabolomics in Alzheimer's Disease

Alzheimer Disease Metabolomics Consortium

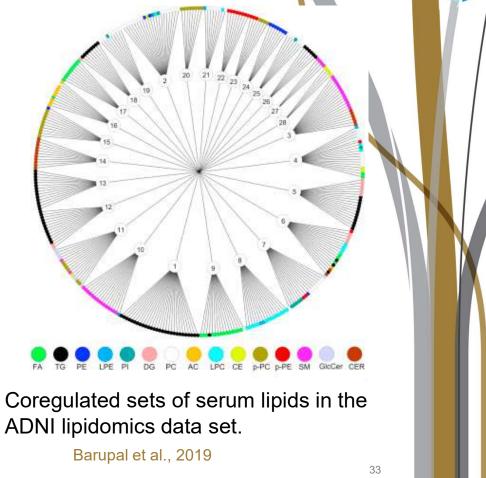
Part of NIA ECOSYSTEM FOR INTEGRATED ALZHEIMER RESEARCH

Wake Forest Baptist Medical Center

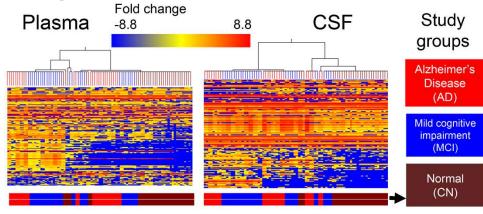
https://sites.duke.edu/adnimetab/

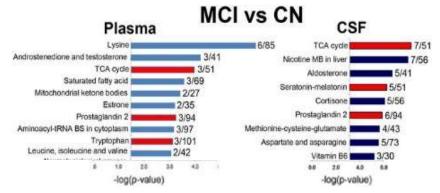

Metabolites as Biomarkers in AD

Title of the Manuscript	Authors	N	Platforms	No. of Metabolites	Major Findings	Tissue/ Biofluid	Year	Model
1H NMR Metabolomic Si	Toulouse, Ce	18	NMR	30s	Glu, NAA, myo-inositol, creatine, phosphocholin	5 Brain Regions	2014	Mice
Graded perturbations of	UK, New Zeε	1 AD, 1C	GC-MS	100s	total of 55 metabolites that were altered in at least	7 Brain Regions [H	2016	Human
Investigation of the Huma	UK	15 AD, 15 C	High resolution	1264 and 1457 ions	36 ions responsible for explaining the variation i	Brain	2013	Human
Metabolic profiling of Alz	Nagoya, Jap	10 AD, 10 C	UPLC-TOF-M	300-1100 Compounds	downstream metabolites of ornithine are increas	Brain	2013	Human
Metabolomic Profiling of	Green et al.,	10 AD, 10 C APP/PS	LC-MS/MS	22 bile acids	higher brain lithocholic acid (p = 0.05) and lowe	Brain extracts, Plas	2017	Mice
Metabolomic Signatures	Korea	10 Alike, 10 C	NMR,HR-MAS	30s	metabolites involved in energy metabolism, inclu-	Brain hippocampus	2014	Mice
Region-specific metabol	CYSMA, Spa	60 mice	UPLC-MS, GO	60 metabolite s+ lipids	associated with abnormal fatty acid composition	Brain regions	2014	mice
Defects in Mitochondrial	Mayo Clinic	9 mice	GC-MS	100	mitochondrial stress and altered energy metabol	Brain tissue	2012	Mouse
Metabolic signatures of I	UK	15 AD, 15 C	NMR	30s metabolites	elevations in brain alanine (15.4 %) and taurine	Brain tissue	2013	Human
1H NMR metabolomics in	Northern Irel	6	NMR	16-20 mets	ascorbate, creatine, γ -aminobutyric acid and N	Brain tissue	2013	Mice
Metabonomic Profiling o	China, PNNL	16 TASTPM, 5 WT	GC-MS	75-143 chromatograph	both brain (d-fructose, I-valine, I-serine, I-threon	Brain, Plasma	2012	Mice
Alzheimer's disease-like	Green et al.,	8-9 mice/ group C, AF	LC-MS	187 metabolites	disturbances in essential amino acids, branched	Brain, Plasma	2016	Mice
Toward a Predictive Mod	Cifuentes, K	73	CE-MS	71 metabolites, unknow	Choline, dimethylarginine, arginine, valine, prolin	CSF	2012	Human
Metabolite Profiling of Al	Roche, Swis	79 patients, 51 C	GC-MS, LC-N	343 identified	Increased cortisol levels	CSF	2012	Human
Comparing metabolomic	Rima, Fiehn	40 AD, 38 C	GCMS, LC-MS	299 metbaolites	monopalmitin, Phosphoethanolamine	CSF	2013	Human
Metabolomic changes in	Rima, Duke	15 AD + 15 C	LC-MS, target	30 metabolites	alterations in tyrosine, tryptophan, purine, and to	CSF	2010	Human
Alterations in metabolic	Rima	40 AD, 36 MCI, 38 C	LC-MS-electro	71 metabolites	methionine (MET), 5-hydroxyindoleacetic acid (CSF	2013	Human
Deregulation of purine m	Ferrer et al.,	23 +35 Ads, 34 C	LC-MS	100s?	altered levels of Purine metabolism dGMP, glyci	Entorhinal cortex	2014	Human
A metabolomic study of	Babraham In	13 mice	NMR	30-40s	a decrease in N-acetyl-l-aspartate, glutamate, g	Extract from eight I	orain re	Mice
Metabolic network failure	Rim, Cristina	199 C, 365 MCI, 175	UPLC-MS/MS	180 metabolites	sphingomyelins and ether-containing phosphatic	Fasting Serum	2017	Human

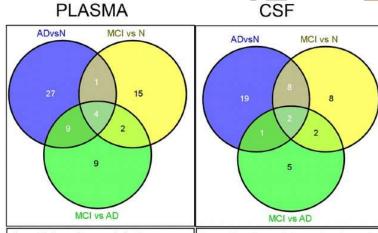

Metabolites as Biomarkers in AD

Title of the Manuscript Authors	N	Platforms	No. of Metabolites	Major Findings	Tissue/ Biofluid	Year	Model
Plasma Metabolite Profile China	57 AD, 58 aMCI, 57 C	UPLC-ToF-MS	85 + 238 metabolites	plasma metabolites (thymine, arachidonic acid,	Plasma	2014	Human
A new metabolomic work Cifuentes, k	75 patients	R+HILIC_UPL	524 high confident me	, histidines, acylglycines	Plasma	2013	Human
Identification of a new pl Eisaid Co,	1 10 people	LC-APCI-MS,	1-50s	Desmosterol	Plasma + CSF	2011	Human
Identification of Altered I Mayo Clinic	30 patients	LC-MS	352 + 351 metabolites	Cholesterol and sphingolipids transport	Plasma + CSF	2013	Human
Studies on diagnostic bi China	AD, C, Therapeutic	UPLC-QTOF-	? Metabolites	lysophosphatidylcholine and intermediates of sp	Plasma, Hippocam	2017	Rats
Evidence of altered ph Cristina, Ki	r 42 AD, 50 MCI, 49 C	NMR, LC-MS	100s	3 PCs were found to be significantly lower in	Plasma?	2013	Humar
Diagnostic Biomarkers c USA, Canad	8 MCI, 9 AD, 12 C	1H-NMR	50s, 22 metabolites	identified significant concentration changes in 2	Saliva	2017	Human
Metabolomics-based scr China	256 AD, 218 C	F-UPLC-MS	?	sphinganine-1-phosphate, Sphinganine-1-phos	Saliva	2015	Human
High-throughput metabol China	AD, MCI, C	UPLC-MS	? Features?	major contributors were cytidine (P = 0.0003) ar	Salivary	2016	Human
Discovery of serum meta China	AD, MCI, C	??	??	sphinganine-1-phosphate and 7-ketocholestero	Serum	2015	Human
Metabolomic profiling of CYSMA, Sp	42 AD, 14 MCI, 37 C	CE-MS	537 features, 20 bioma	increase in in levels of choline, creatinine, asyn	Serum	2014	Human
Metabolomic research o CYSMA, Sp	7 Mice	DI-MS	100s	impaired homeostasis of histamine, altered meta	Serum	2015	Mice
Metabolomic study of lip Spain	22 AD, 18 C	DI-MS		membrane breakdown, diacylglycerols, oleamide	Serum	2014	Human
Using direct infusion ma CYSMA, Sp	22 AD, 18 C	DIMS-ESI+ve	??	high levels of phospholipids containing saturated	Serum	2014	Human
Metabolomic screening (CYSMA, Sp	30 mice	DIMS-ESI+ve	??	phospholipids, fatty acids, purine and pyrimidine	Serum	2015	Mice
Combination of metaboli CYSMA, Sp	17 AD, 19 C	ESI-LC-MS, +	60> Lipids	phosphatidylcholines, phosphatidylethanolamine	Serum	2014	Human
Application of metabolon CYSMA, Sp	60 mice	FI-APPI-MS,	46 (TAGs, CE, DAG, F	energy metabolites, amino acids and lipids	Serum	2015	Mice
Serum fatty acid profiles China	46 AD, 39 C	GC-MS	50-80s	2 saturated fatty acids (C14:0 and C16:0; p < 0.	Serum	2012	Human
Metabolite profiling for th CYSMA, Sp	23 AD, 21 C	GC-MS	50-100 metabolites	pyroglutamate, adenosine, impaired metabolism	Serum	2014	Serum
Targeted lipidomics distil Italy, USA	77 MCI, 90 AD, C 51	LCOrbiTrap-M	??	DAGs were increased in the serum of a subset of	Serum	2015	Human
Deciphering metabolic a CYSMA, Sp	30 AD, 30 C	UPLC-MS	100s, LP, SL, P, SL	deficiencies in energy metabolism, altered amin	Serum	2015	Mice
Discovery of serum meta China	MCI, AD, C	UPLC-MS	?	sphinganine-1-phosphate and 7-ketocholestero	Serum	2016	Human
Metabolome in progress VTT, Finland	46 C, 143 MCI, 47 AE)	100s	lowered ether phospholipids, phosphatidylcholine	Serum	2011	Human
Blood metabolite markers of preclinic	93 AD, 99 C	HPLC-MS, tar	187 metabolite	distinct metabolites associated, phospholipids	Serum- Time cours	2016	Human
Targeted Metabolomic A Austria	90 C, MCI, AD	FIA-MS/MS ta	163 metabolites	lipid PC aeC40:4 significantly differentiated AD	soluble lysates of p	2017	Human
Metabolomics reveals siç CYSMA, Sp	30 APP/PS1, 30 C	GC-MS and u	64 metabolites	abnormal metabolism of phospholipids, energy of	Speen and Thymus	2015	Mice
Urinary Metabolomics R China	CRND8 mice AC, C	?	73 diff. metabolites	perturbations of aromatic amino acid metabolism	Urinary	2016	Mice
Development of Isotope Wishart, Ca	r 24	Iso-LC-MS	600 metabolites	methionine, desaminotyrosine, taurine, N1-acety	Urine	2014	Mice
NMR-based metabolomic Japan	3-5 mice	NMR	30s	3-hydroxykynurenine, homogentisate and allanto	Urine	2013	Mice
High-Throughput Metabo China	30 AD, 30 C	UPLC-ToF-MS	24 diff metabolites	pentose and glucuronate interconversions, glyox	Urine	2017	Mice
Alterations of the volatile Cleaveland	10 AD, 12 C	Volatilome, Go	80s	phenylacetone (increased concentration in APP	Urine	2016	Mice


Many Interpretations of Metabolic Changes in AD

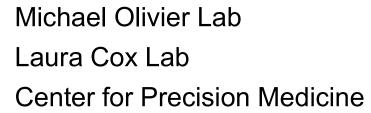


Wilkins & Trushina, 2018



Many Interpretations of Metabolic Changes in AD

Trushina, E., Dutta, T., Persson, X.M.T., Mielke, M.M. and Petersen, R.C., 2013. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PloS one, 8(5), p.e63644.

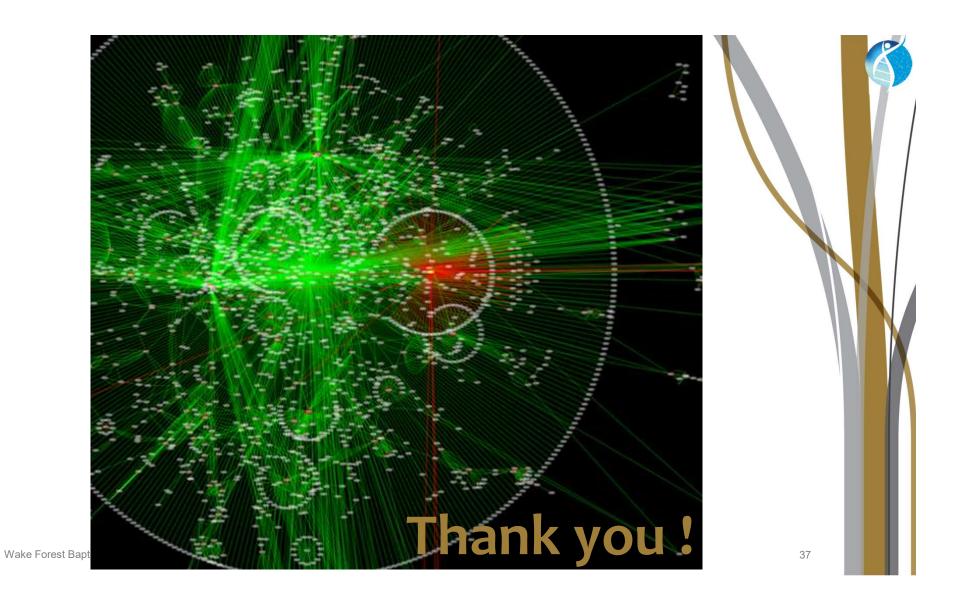

- 1. Polyamine metabolism
- 2. Lysine metabolism
- Aminoacyl-tRNA biosynthesis in cytoplasm
- 4. Tryptophan metabolism
- Cortisone biosynthesis and metabolism
- Prostaglandin 2 biosynthesis and metabolism

Summary

- Spectral acquisition and validation of > 330 unique compounds with EI and CI HR spectra in the EI-MS and CI-MS/MS libraries. And is growing with novel annotation (in silico approaches).
- Quantification of >500 unique compounds in muscles and liver in a single sample using 3 runs (~66 mins together) using spectral and RT libraries.
- Ample opportunities and scope to find AD Biomarkers of Metabolism in CSF, Plasma, Urine, Fecal samples and tissues from NHP models, mice etc.
- Complementarity of metabolomics in ongoing/ future ADRC collections and (-omics) studies.

35

Dr. Suzanne Craft


Dr. Tim Hughes

Dr. Samuel Lockhart

WFSOM Resources

Southwest National Primate Research Center

Texas Biomedical Research Institute

